Geoffrey Pruvost bio photo

Geoffrey Pruvost

Docteur-Entrepreneur a l'Inria Startup Studio.

Email Google Scholar LinkedIn Github Stackoverflow ResearchGate Orcid

Thèse

2018 - 2021 Université de Lille / Inria Contributions à l’optimisation multi-objectif à base de décomposition

Dans cette thèse, nous nous intéressons à l’optimisation combinatoire multi-objectif, et en particulier aux algorithmes évolutionnaires à base de décomposition. Ce type d’approches consiste à décomposer le problème multi-objectif original en plusieurs sous-problèmes mono-objectifs, qui sont alors résolus de façon coopérative. Dans ce cadre, nous considérons la conception et l’analyse de nouveaux composants algorithmiques contribuant à la mise en place des fondations d’un framework d’optimisation à base de décomposition pour les problèmes combinatoires multi-objectifs dits “boîte-noire”, pour lesquels la forme analytique des fonctions objectif n’est pas connue de l’algorithme de résolution. Tout d’abord, nous étudions les éléments clés pour une meilleure répartition des efforts de calculs tout au long du processus d’optimisation. Pour cela, nous étudions l’impact conjoint de la taille de la population et du nombre de solutions générées par itération, tout en proposant différentes stratégies de sélection du ou des sous-problèmes à optimiser à chaque étape. Nous étudions ensuite différents mécanismes permettant de s’échapper des optima locaux. Ceux-ci s’inspirent de techniques issues de l’optimisation mono-objectif et permettent d’améliorer considérablement le profil de convergence des approches considérées. Nous nous plaçons pour finir dans un contexte d’optimisation coûteuse, où l’évaluation de chaque solution s’avère particulièrement gourmande en temps de calcul, ce qui limite considérablement le budget alloué à l’optimisation. Pour cela, nous étudions de nouveaux composants s’appuyant sur des méta-modèles combinatoires, et nous considérons leur intégration au sein d’approches évolutionnaires multi-objectifs basées sur la décomposition.