Geoffrey Pruvost bio photo

Geoffrey Pruvost

Docteur-Entrepreneur a l'Inria Startup Studio.

Google Scholar LinkedIn Github Stackoverflow ResearchGate Orcid

Conference Papers

January 2023 Walsh-based surrogate-assisted multi-objective combinatorial optimization: A fine-grained analysis for pseudo-boolean functions Bilel Derbel, Geoffrey Pruvost, Arnaud Liefooghe, Sébastien Verel, Qingfu Zhang
Journal of Applied Soft Computing
[PDF]

October 2022 Moead-framework: a modular MOEA/D Python framework Geoffrey Pruvost, Bilel Derbel, Arnaud Liefooghe
Journal of Open Source Software
[PDF]

June 2021 Enhancing MOEA/D with Escape Mechanisms Bilel Derbel, Geoffrey Pruvost, Byung-Woo Hong
IEEE Congress on Evolutionary Computation (IEEE CEC 2021)
Cite the paper [BIB File] - [PDF]

July 2020 Surrogate-assisted Multi-objective Combinatorial Optimization based on Decomposition and Walsh Basis Geoffrey Pruvost, Bilel Derbel, Arnaud Liefooghe, Sébastien Verel, Qingfu Zhang
Genetic and Evolutionary Computation Conference (GECCO 2020)
Cite the paper [BIB File] - [PDF] - [slides] - [Video]

April 2020 On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D Geoffrey Pruvost, Bilel Derbel, Arnaud Liefooghe, Ke Li, Qingfu Zhang
Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science, vol 12102. Springer, Cham
Cite the paper [BIB File] - [PDF] - [slides] - [Video]

Thesis

2018 - 2021 University of Lille / Inria Machine Learning and Decomposition Techniques for Large-scale Multi-objective Optimization